p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.81C24, C22.140C25, C24.153C23, C42.123C23, C4.962+ 1+4, C4⋊Q8⋊46C22, D4⋊5D4⋊37C2, Q8⋊5D4⋊30C2, (C4×D4)⋊70C22, (C4×Q8)⋊66C22, C4⋊C4.325C23, C4⋊D4⋊42C22, (C2×C4).130C24, (C2×C42)⋊75C22, C22⋊Q8⋊52C22, (C2×D4).332C23, C4.4D4⋊43C22, (C2×Q8).310C23, C42.C2⋊25C22, (C22×Q8)⋊44C22, C42⋊2C2⋊19C22, C22.29C24⋊34C2, C42⋊C2⋊64C22, C22.32C24⋊21C2, C22≀C2.14C22, C4⋊1D4.119C22, C22⋊C4.116C23, (C22×C4).400C23, C22.54C24⋊11C2, C22.45C24⋊20C2, C2.69(C2×2+ 1+4), C2.53(C2.C25), C22.26C24⋊52C2, (C22×D4).439C22, C22.D4⋊63C22, C22.57C24⋊11C2, C22.31C24⋊27C2, C23.38C23⋊34C2, C22.46C24⋊35C2, C22.49C24⋊25C2, C22.34C24⋊24C2, C22.47C24⋊34C2, C23.36C23⋊51C2, (C2×C4⋊C4)⋊91C22, (C2×C4○D4)⋊52C22, (C2×C22⋊C4).393C22, SmallGroup(128,2283)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.140C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=ba=ab, f2=g2=a, dcd=gcg-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=fcf-1=bc=cb, ede-1=bd=db, be=eb, bf=fb, bg=gb, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 844 in 525 conjugacy classes, 380 normal (36 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊1D4, C4⋊Q8, C4⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C23.36C23, C22.26C24, C22.29C24, C23.38C23, C22.31C24, C22.32C24, C22.34C24, D4⋊5D4, Q8⋊5D4, C22.45C24, C22.46C24, C22.47C24, C22.49C24, C22.54C24, C22.57C24, C22.140C25
Quotients: C1, C2, C22, C23, C24, 2+ 1+4, C25, C2×2+ 1+4, C2.C25, C22.140C25
(1 5)(2 6)(3 7)(4 8)(9 31)(10 32)(11 29)(12 30)(13 23)(14 24)(15 21)(16 22)(17 27)(18 28)(19 25)(20 26)
(1 7)(2 8)(3 5)(4 6)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)(17 25)(18 26)(19 27)(20 28)
(1 15)(2 24)(3 13)(4 22)(5 21)(6 14)(7 23)(8 16)(9 17)(10 26)(11 19)(12 28)(18 30)(20 32)(25 29)(27 31)
(1 18)(2 27)(3 20)(4 25)(5 28)(6 17)(7 26)(8 19)(9 24)(10 13)(11 22)(12 15)(14 31)(16 29)(21 30)(23 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 9 5 31)(2 10 6 32)(3 11 7 29)(4 12 8 30)(13 27 23 17)(14 28 24 18)(15 25 21 19)(16 26 22 20)
(1 21 5 15)(2 22 6 16)(3 23 7 13)(4 24 8 14)(9 19 31 25)(10 20 32 26)(11 17 29 27)(12 18 30 28)
G:=sub<Sym(32)| (1,5)(2,6)(3,7)(4,8)(9,31)(10,32)(11,29)(12,30)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (1,7)(2,8)(3,5)(4,6)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28), (1,15)(2,24)(3,13)(4,22)(5,21)(6,14)(7,23)(8,16)(9,17)(10,26)(11,19)(12,28)(18,30)(20,32)(25,29)(27,31), (1,18)(2,27)(3,20)(4,25)(5,28)(6,17)(7,26)(8,19)(9,24)(10,13)(11,22)(12,15)(14,31)(16,29)(21,30)(23,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,5,31)(2,10,6,32)(3,11,7,29)(4,12,8,30)(13,27,23,17)(14,28,24,18)(15,25,21,19)(16,26,22,20), (1,21,5,15)(2,22,6,16)(3,23,7,13)(4,24,8,14)(9,19,31,25)(10,20,32,26)(11,17,29,27)(12,18,30,28)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,31)(10,32)(11,29)(12,30)(13,23)(14,24)(15,21)(16,22)(17,27)(18,28)(19,25)(20,26), (1,7)(2,8)(3,5)(4,6)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24)(17,25)(18,26)(19,27)(20,28), (1,15)(2,24)(3,13)(4,22)(5,21)(6,14)(7,23)(8,16)(9,17)(10,26)(11,19)(12,28)(18,30)(20,32)(25,29)(27,31), (1,18)(2,27)(3,20)(4,25)(5,28)(6,17)(7,26)(8,19)(9,24)(10,13)(11,22)(12,15)(14,31)(16,29)(21,30)(23,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9,5,31)(2,10,6,32)(3,11,7,29)(4,12,8,30)(13,27,23,17)(14,28,24,18)(15,25,21,19)(16,26,22,20), (1,21,5,15)(2,22,6,16)(3,23,7,13)(4,24,8,14)(9,19,31,25)(10,20,32,26)(11,17,29,27)(12,18,30,28) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,31),(10,32),(11,29),(12,30),(13,23),(14,24),(15,21),(16,22),(17,27),(18,28),(19,25),(20,26)], [(1,7),(2,8),(3,5),(4,6),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24),(17,25),(18,26),(19,27),(20,28)], [(1,15),(2,24),(3,13),(4,22),(5,21),(6,14),(7,23),(8,16),(9,17),(10,26),(11,19),(12,28),(18,30),(20,32),(25,29),(27,31)], [(1,18),(2,27),(3,20),(4,25),(5,28),(6,17),(7,26),(8,19),(9,24),(10,13),(11,22),(12,15),(14,31),(16,29),(21,30),(23,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,9,5,31),(2,10,6,32),(3,11,7,29),(4,12,8,30),(13,27,23,17),(14,28,24,18),(15,25,21,19),(16,26,22,20)], [(1,21,5,15),(2,22,6,16),(3,23,7,13),(4,24,8,14),(9,19,31,25),(10,20,32,26),(11,17,29,27),(12,18,30,28)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2L | 4A | ··· | 4F | 4G | ··· | 4Y |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | 2+ 1+4 | C2.C25 |
kernel | C22.140C25 | C23.36C23 | C22.26C24 | C22.29C24 | C23.38C23 | C22.31C24 | C22.32C24 | C22.34C24 | D4⋊5D4 | Q8⋊5D4 | C22.45C24 | C22.46C24 | C22.47C24 | C22.49C24 | C22.54C24 | C22.57C24 | C4 | C2 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
Matrix representation of C22.140C25 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 1 | 4 |
2 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 1 | 4 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 3 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 1 | 0 | 1 |
0 | 4 | 3 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 1 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,4],[2,0,0,3,0,0,0,0,0,3,2,0,0,0,0,0,0,1,2,0,0,0,0,0,4,0,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,4,0,0,0,0,0,4,4,0,0,0,0,0,0,2,0,0,1],[3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,4,4,0,0,0,0,0,4,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,3,0,1],[0,4,1,0,0,0,0,0,4,0,0,1,0,0,0,0,3,0,0,1,0,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,4],[0,4,1,0,0,0,0,0,1,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4] >;
C22.140C25 in GAP, Magma, Sage, TeX
C_2^2._{140}C_2^5
% in TeX
G:=Group("C2^2.140C2^5");
// GroupNames label
G:=SmallGroup(128,2283);
// by ID
G=gap.SmallGroup(128,2283);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,723,520,2019,570,136,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b*a=a*b,f^2=g^2=a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=f*c*f^-1=b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations